Правило буравчика для определения направления магнитного поля

Правило буравчика или правило правой руки, определение и формула

При решении многих задач, связанных с расчётом электрических величин, необходимо знать линии магнитной индукции относительно электрического тока и наоборот. Для определения ориентации сил и полей часто используют правило буравчика, дающее представление о направлении векторов, магнитном поле и других данных, используемых в электротехнике, физике.

Правило буравчика (ПБ), именуемое ещё и правилом штопора, винта сводится к несложному определению. Если кончик буравчика нацелить по направлению тока, то линии магнитной индукции (ЛМИ) сориентируются в том направлении, в котором будет крутиться рукоятка инструмента.

Указанный на рисунке пример отчётливо демонстрирует описанное правило. Воображаемый винт с правосторонней резьбой, кругооборот которого совпадает с линиями магнитного поля (круги красного цвета), указывает на направление тока (стрелка синего цвета).

Это главная и общая формулировка правила, помогающая выявить направление в пространстве нужных для расчётов осевых векторов:

  • параметров индукционного тока;
  • угловой скорости;
  • магнитной индукции.

Правило буравчика кратко и понятно

В электротехнике ПБ показывает направление ЛМИ с привязкой к вектору электрического тока, проходящего в проводнике, и наоборот — определяет путь электротока в катушке во взаимосвязи с вектором ЛМИ.

Для экспериментального понимания нужно взять штопор или винт с правосторонней резьбой и сначала закручивать, а после откручивать. В первом случае это будет происходить по часовой стрелке и винт (штопор) будет двигаться вверх, а во втором случае вращение будет против часовой стрелки и винт (штопор) будет двигаться вниз. Соответственно этому и направление тока будет следовать поведению винта: вверх в первом случае и вниз во втором случае (показано стрелкой).

Правило правой и левой руки в физике

Для визуального восприятия правила правой руки (ППР) надо зафиксировать эту руку в таком положении, чтобы силовые линии магнитного поля (ЛМП) оказались в ладони, а большой палец на уровне прямого угла был бы отогнут вверх, напоминая жест «всё отлично». Указанное большим пальцем направление будет аналогично направлению тока относительно МП. Другие 4 пальца кисти руки, укажут на сторону вращения линий индукции, создаваемого МП. Отсюда вывод — ППР определяет направление ЛМИ с направлением тока прямолинейного проводника.

Правило левой руки (ПЛР) обозначает направление силы, воздействующей на имеющийся в магнитном поле проводник с током. Если ладонь левой руки зафиксировать таким образом, чтобы кисть пронизывали ЛМИ, а 4 пальца вытянуть по курсу тока в проводнике, тогда откинутый под прямым углом большой палец, укажет направленность силы, действующей на плюсовой заряд.

Отмеченное правило справедливо при решении задач как по определению сил Лоренца, так и Ампера.

Справка! На минусовой заряд сила со стороны МП влияет в обратном направлении.

Правило буравчика: формулировка и определение

Формулировка и определение ПБ известны всем, кто знаком со школьным курсом физики. Но главным в этом правиле является его понимание, которое заключается в следующем:

  1. ПБ, не являясь законом физики, поясняет основополагающее свойство электромагнетизма.
  2. ПБ показывает свойство электрического тока и действующих рядом с ним магнитных силовых полей.

Правило буравчика: формула

ПБ даёт возможность определить некоторые параметры в электродинамике без каких-либо проблем. Взаимосвязь физических величин была выявлена в XIX столетии законом Фарадея: E = – dФ/dt, где

  • Е — ЭДС;
  • Ф — создаваемый вектором индукции магнитный поток;
  • t — временной интервал.

«Минус», стоящий в формуле после знака равенства, объясняется условием обратной направленности ЛМП току в проводнике.
Для простого рассмотрения методики использования ПБ данные, по какому методу и какое соответствие должно быть для тока в проводнике, движущемся в МП, представлены в виде таблицы.

Метод определенияСоответствие
ППР
Направление движения Бдействующей на проводник силе
Направление сложенных пальцевиндукционному току

В нижеследующей таблице представлены метод и соответствие для левой руки.

Метод определенияСоответствие
ПЛР
Направление большого пальцадвижению контрольного провода
Направление сложенных пальцевтоку в контрольном проводе

Для чего применяют правило буравчика

Известно, что электроток — это направленное движение элементарных частиц, переносящих заряд электричества по имеющим электропроводимость проводникам.

Если взять источник электродвижущей силы (ЭДС) с током, идущим по проводу замкнутой цепи, то есть от «плюса» к «минусу», то в окружении проводника происходят вращающиеся по определённому кругу, магнитные кругообороты, конфигурация которых имеет важное значение. Эти крутящиеся поля взаимодействуют друг с другом и могут притягивать или отталкивать проводники к себе и от себя. А зависит это от того, как и в какую сторону вращаются магнитные поля.

Характер такой взаимосвязи был сформулирован Ампером в виде закона, который стал основой для возникновения электромоторов. Без знания ПБ (правила буравчика) невозможно было бы изобрести электромотор. В этом заключается экспериментальное применение правила.

При расчёте катушек индукции характерным является использование ПБ, а именно с учётом стороны, в которую направлено завихрение, можно будет воздействовать на движущийся ток, в том числе создавать при необходимости противоток.

Правило правой руки для магнитного поля

Если в середину обмотки стремительно ввести и вывести постоянный магнит, то указатель амперметра в момент ввода отклонится в одну сторону, а вывода — в обратную.

Возникшие в таких случаях электротоки именуются индукционными. Причиной их появления является электродвижущая сила индукции (ЭДС).
ЭДС в проводниках создаётся из-за действия изменяющихся МП, в которых расположены эти проводники.

Направление ЭДС индукции в проводнике по ППР можно высказать следующим образом:
Если кисть правой руки установить ладонью к северному полюсу в том положении, чтобы отогнутый большой палец указывал в сторону движения проводника, то четыре пальца укажут на направление ЭДС индукции.

Правило правой руки для соленоида (катушки индуктивности)

Описанный принцип винта имеет отношение для случаев с прямолинейным проводником электротока. И всё же в электротехнике используются также агрегаты с проводниками, не имеющими прямолинейной формы, а закон винта в таких случаях не применяется. Это касается катушек индуктивности и соленоидов.

Соленоид, как вид катушки, представлен в виде обмотки провода в форме цилиндра с длиной, намного превышающей диаметр соленоида. Дроссель индуктивности разнится от соленоида лишь длиной самого проводника.

Физик Ампер на основе своих изучений выяснил и подтвердил, что при прохождении электрического тока по дросселю индуктивности указатели компаса у краев провода обмотки цилиндрического типа поворачивались противоположными концами в направлении недоступных зрению потоков ЭМ поля. Эти опыты показали, что около дросселя индуктивности с током создаётся МП, а обмотка провода цилиндрического типа создает магнитные полюса. ЭМ-поле, формируемое электрическим током цилиндрической обмотки провода, похоже на МП постоянного магнита — конец обмотки провода цилиндрической формы, откуда выходят ЭМ потоки, указывает полюс северный, а обратный конец — южный.

Для распознания полюсов и ориентации ЭМ-линий в катушке с током применяется ППР для соленоида. Если за катушку взяться рукой так, чтобы сжатые пальцы кисти руки совпали по курсу потока электронов в витках, то оттопыренный под прямым углом большой палец укажет путь направленности электромагнитного фона — северный полюс.

Справка! Разнообразные формулировки ПБ, ППР или другие аналогичные правила не являются нужными по своей важности. Всех их непременно знать нет нужды, если знаешь основополагающее правило одного из вариантов. Тем не менее многие из представленных ниже правил удачно приспособлены к специфичным случаям их применения, следовательно, удобны для быстрого понимания направления векторов.

Правило буравчика для прямого и кругового тока

Если создаваемое в пространстве магнитное поле происходит от прямолинейного проводника с током, то магнитная стрелка в любой точке поля будет устанавливаться по касательной к кругам, центры которых находятся на оси проводника, а плоскости — под прямым углом к проводнику.

В этом случае курс вектора МИ определим с помощью правила правого штопора (винта), т. е. при вращении штопора таким образом, чтобы он поступательно двигался по курсу силы тока в проводе, вращение головки штопора (винта) совпадает с направлением вектора магнитной индукции B.

Из второго рисунка усматривается, что магнитные линии (МЛ) в форме кругов замыкаются вокруг проводника с током. В плоскость кругового проводника МЛ входят с одной стороны, а с другой выходят. МП кругового тока похоже на поле короткого магнита, ось которого совпадает с перпендикуляром к центру плоскости контура.

Направление поля КТ можно определить, пользуясь ПБ. Инструмент нужно установить по оси кругового тока под прямым углом к его плоскости. Вращая рукоятку по направлению тока в контуре, можно понять, какое будет направление у МП.

Правило буравчика для момента силы

Для момента силы (МС) ПБ (винта) можно сформулировать следующим образом: если крутить винт (буравчик) в ту сторону, в которую действующие силы пытаются повернуть тело, то винт будет ввинчиваться или отвинчиваться в соответствии с тем, куда будет направлен МС.

Формулировка этого правила применительно к ПР будет выглядеть так: если вообразить, что взятое в правую руку тело пытаемся повернуть в сторону, указываемую четырьмя пальцами, т. е. прилагается сила для разворота тела, то под прямым углом отогнутый большой палец укажет в ту сторону, куда вращающий момент, т. е. МС, будет направлен.

Определение направления МС по правилу ПР возможно при совмещении указательного пальца с радиус-вектором, среднего пальца — с вектором силы, а с кончика большого пальца, поднятого под прямым углом, обозреваются два вектора. В случае если от указательного пальца движение выполняется к среднему против часовой стрелки, то направление МС совпадает с направлением, устанавливаемым большим пальцем. Если движение выполняется по часовой стрелке, то направление МС обратно ему.

Правило правой руки для угловой скорости

Формулировка ППР для определения угловой скорости (УС) следующая: если кистью правой руки обхватить ось вращения таким образом, чтобы пальцы руки сходились с направлением тангенциальной скорости (ТС), то отогнутый большой палец укажет сторону вектора УС ω.

Как известно, крутящееся колесо имеет не только УС, но и УУ, и оно не совпадает с направлением линейной ТС, а находится под углом 90 градусов к плоскости колеса.

Такая формулировка создаёт некоторое замешательство среди неосведомлённых: оказывается, УС ω действует вдоль оси крутящегося колеса. При вращении колеса очевидно, что единственной застывшей (неподвижной) точкой считается его центр. В этой связи начало вектора УС принято устанавливать в центре вращающейся окружности.

Вектор УС может меняться лишь по величине. А вот вектор УУ изменяется как по величине, так и по направленности — при ускорении направления векторов УС и УУ совпадают, а при замедлении направленность противоположная.

Правило правой руки для векторного произведения

1-й вариант правила ПР для векторного произведения:

Если векторы изобразить таким образом, чтобы их начальные точки совпадали, и вращать 1-й вектор-сомножитель коротким путём ко 2-му вектору-сомножителю, а 4 пальца правой руки при этом указывают в сторону вращения, то большой палец, оттопыренный под прямым углом, покажет направление вектора-произведения (ВП).

2-й вариант правила ПР для ВП:

Если векторы изобразить так, чтобы совпадали их начала, а большой палец правой руки вытянуть по длине 1-го вектора-сомножителя, указательный — по длине 2-го вектора-сомножителя, то средний приблизительно покажет направление вектора-произведения.

По аналогии с электродинамикой большой палец — это ток (I), указательный — вектор МИ (B), а средний палец — сила (F). Ассоциативно легче будет запомнить по расположению пальцев руки, напоминающему пистолет.

ППР для ВП означает, что когда совпадающие в одной точке векторы пытаться поворачивать по короткому маршруту — первый вектор (большой палец) ко второму (указательный палец), то буравчик будет совершать свой круг в сторону произведения векторов (средний палец).

Кто придумал правило буравчика

По поводу изобретателя этого правила и человека, придумавшего его, сведений не имеется. По разным источникам отмечаются разные имена с обязательной привязкой к фамилии, похожей на название инструмента. Однако какой-либо связи с известными физиками в данном случае нет.

Возможно это одно из тех правил, которое в силу поведения электротока и МП определило схожесть с действием известного инструмента, а потом уже было сформулировано.

Правило буравчика: рисунок (схема)

Рассмотрим наглядные примеры демонстрации правила буравчика на схемах:

Правило буравчика: примеры задач с решением

Задача 1. По проводнику длиной 40 см протекает ток силой 10 А. Чему равна индукция МП, куда помещён проводник, если на него действует сила 8 мН? (Ответ отразить в мТл).

Решение: Дано:

l=40 cм или=0,4 м, I=10 A, F=8 мН или=0,008 Н.

Читайте также:  Закон Ома простыми словами: для участка цепи, для полной цепи +ВИДЕО

Проводим вычисление по формуле модуля магнитной индукции:

B = 0,008 Н / (0,4 м*10 A) = 0,002 Tл = 2 мTл.

Задача 2. Определить модуль силы, влияющей на проводник длиной 50 см при силе тока 10 А в магнитном поле с индукцией 0,15 Тл. (Ответ отразить в мН).

Решение: Дано:

l = 50 cм или 0,5 м, I = 10 A, B = 0,15 Tл.

Проводим вычисление по формуле силы Ампера:

F = 0,15 Tл * 10 A * 0,5 м = 0,75 Н = 750 мН

Задача 3. С какой скоростью влетает электрон в однородное МП (индукция 1,8 Тл) под углом 90 градусов к линиям индукции, если МП действует на него с силой 3,6∙10 –12 Н? (Ответ отразить в км/с).

Решение: Дано:

B = 1,8 Tл, F = 3,6*10 –12 Н, α = 90°.

Вычисление: Заряд электрона равен: q₀ = 1,6·10 –19 Кл.

Формула силы Лоренца: выразим из неё скорость, учитывая, что sin 90° = 1.

v = 3,6*10 –12 Н / (1,6*10 –19 Кл*1,8 Tл) = 1,25*10 –7 м/с = 12 500 км/с.

Ответ: v = 12 500 км/с.

Ознакомившись один раз с ППР и ПЛР, понимаешь, до какой степени они легки и просты в применении. Ведь эти правила компенсируют слабые знания некоторых законов физики, а конкретно электротехники. Основное в этих правилах — не перепутать путь течения тока.

Преимущества ППР и ПЛР как раз заключается в том, что они дают возможность с достаточной точностью определить основные параметры без применения дополнительных приборов. Правила используются и при различных опытах и испытаниях, и в практике, если дело касается проводников и электромагнитных полей.

Правило буравчика простым языком

Во многих задачах, связанных с расчётами электрических величин, важно знать направление линий магнитной индукции относительно электрического тока и наоборот. Сложные расчёты параметров магнитных полей в различных системах также невозможно выполнить без учёта направления векторов.

Для определения ориентации сил и полей на практике часто используют мнемонические правила, одним из которых является правило буравчика, с успехом применяемое в электротехнике.

Определение

В узком понимании, правило буравчика – это мнемонический алгоритм, применяемый для определения пространственного направления магнитной индукции, в зависимости от ориентации электрического тока, возбуждающего магнитное поле.

Данное правило можно сформулировать следующим образом: Если острие буравчика (штопора, винта) направить вдоль вектора тока, то ориентация линий магнитной индукции совпадёт с направлением, в сторону которого вращается ручка буравчика в традиционном исполнении этого инструмента (с правым винтом) [ 1 ] (рис. 1.)

Рис. 1. Правило буравчика для прямого проводника

На рисунке 1 показана схема для простейшего случая: по прямому участку проводника, в сторону от наблюдателя протекает электрический ток (стрелка синего цвета). Условный штопор направлен своим острым концом по вдоль линии по направлению тока. Если представить поступательное движение буравчика вдоль проводника, то направление линий, описываемых рукояткой штопора, совпадут с ориентацией магнитных линий электрического поля.

Главное правило

Рассмотренный нами пример является частным случаем алгоритма буравчика. Существует несколько вариантов формулировок правила, применяемых в различных ситуациях.

Общая, или главная формулировка, позволяет распространить данное правило на все случаи. Это вариант мнемонического правила, используемый для определения ориентации результирующей векторного произведения, называемого аксиальным вектором, а также для выбора связанного с этими векторами правого базиса (трёхмерной системы координат), что позволяет определить знак аксиального вектора.

Примечание: правый базис – условное соглашение, согласно которому выбирается декартовая система координат (положительный базис). Иногда полезно пользоваться зеркальным отражением декартовой системы (левый или отрицательный базис).

Главное правило позволяет определить направление в пространстве аксиальных векторов, важных для вычислений:

  • угловой скорости;
  • параметров индукционного тока;
  • магнитной индукции.

Хотя ориентация аксиального вектора является условной, она важна для расчётов: придерживаясь принятого алгоритма выбора, легче производить вычисления, без риска перепутать знаки.

Во многих случаях применяют специальные формулировки, хорошо описывающие частные случаи в конкретной ситуации.

Правило правой руки

В электротехнике очень часто применяют интерпретацию буравчика для правой руки.

Действия можно сформулировать так: «Если отведённый в сторону большой палец правой руки расположить вдоль проводника так, чтобы он совпал с направлением электрического тока, то остальные пальцы будут указывать направление образованных электрическим полем магнитных силовых линий. (см. схему на рис. 2).

Рис. 2. Иллюстрация правила правой руки

Сформулированные выше алгоритмы применяются и для соленоидов. Но разница в том, что в случае с соленоидом, рукоятку буравчика вращают так, чтобы это движение совпадало с направлением токов в витках, а продвижение винта буравчика указывает на ориентацию вектора магнитных линий в соленоиде.

При использовании правой руки, пальцами охватывают (условно) катушку так, чтобы направление тока в витках совпадало с пространственным расположением пальцев. Тогда большой палец укажет на ориентацию вектора электромагнитных линий внутри катушки. На рисунке 3 изображены схемы, объясняющие алгоритмы определения направлений векторов для соленоидов.

Рис. 3. Иллюстрация правила правой руки для катушки

Не трудно догадаться, что данные правила можно применять с целью определения направления тока. Например, если с помощью магнитной стрелки определить устремление линий магнитной индукции, то путём применения правила буравчика (как вариант его формулировки для правой руки), легко определяется, в какую сторону течёт ток.

Специальные правила

Рассмотрим варианты главного правила буравчика для частных случаев. Применение таких правил часто упрощает процесс вычислений.

Для векторного произведения

Расположите векторы так, чтобы их начальные точки совпадали. Для этой ситуации правило буравчика звучит так:

Если один из векторов сомножителей вращать кратчайшим способом до совпадения направлений со вторым вектором, то буравчик, вращающийся подобным образом, будет завинчиваться в сторону, куда указывает векторное произведение.

По циферблату часов

При расположении векторов способом совпадения их начальных точек можно определить направление вектора-произведения с помощью часовой стрелки. Для этого необходимо мысленно двигать кратчайшим путём один из векторов-сомножителей в сторону другого вектора. Тогда, если смотреть со стороны вращения этого вектора по часовой стрелке, то аксиальный вектор будет направлен вглубь циферблата.

Правила правой руки, для произведения векторов

Существует два варианта правила.

Первый вариант:

Если согнутые пальцы правой руки направить в сторону кратчайшего пути для совмещения вектора-сомножителя с другим сомножителем (векторы выходят из одной точки), то отведенный в сторону большой палец укажет направление аксиального вектора.

Второй вариант:

Если правую ладонь расположить таким образом, чтобы получилось совпадение большого пальца с первым вектором-сомножителем, а указательного – со вторым, то отведённый в сторону средний палец совпадёт с направлением вектора произведения.

Для базисов

Перечисленные выше правила применяются также для базисов.

Например, правило буравчика для правого базиса можно записать так:

При вращении ручки буравчика и векторов таким образом, чтобы первый базисный вектор по кратчайшему пути стремился ко второму, то штопор будет завинчиваться в сторону третьего базисного вектора.

Указанные правила универсальны. Их можно переписать для механики с целью определения векторов:

  • механического вращения (определение угловой скорости);
  • момента приложенных сил;
  • момента импульса.

Правила буравчика применяются также для уравнений Максвелла, что усиливает их универсальность.

Правило левой руки

В электротехнике довольно часто возникают вопросы, связанные с определением силы Ампера. Для решения задач подобного рода применяется алгоритм, называемый правилом левой руки (иллюстрация на рис. 4) – мнемоническое правило, описывающее способ определения направленности Амперовой силы, выталкивающей точечный заряд либо проводник, по которому протекает электроток.

Алгоритм применения левой руки состоит в следующем: если левую ладонь будут перпендикулярно пронизывать силовые линии, а пальцы расположатся по направлению тока, то действующие на проводник силы будут устремляться в сторону, куда указывает оттопыренный большой палец.

Рис. 4. Сила Ампера

Интерпретация для точечного заряда

Заметим, что сформулированное правило справедливо для решения задач по определению ориентации силы Лоренца. Перефразируем правило: если ладонь левой руки поместить в магнитное поле таким образом, чтобы линии индукции перпендикулярно входили в неё, а выпрямленные пальцы направить в сторону движения положительного заряда, тонаправление вектора силы Лоренца совпадёт с отставленным на 90º большим пальцем.

Визуальная интерпретация правила левой руки представлена на рисунке 5. Обратите внимание на то, что алгоритм действий для определения сил Ампера и Лоренца практически одинаков.

Рис. 5. Интерпретация правил левой руки

Примечание: В случае с отрицательным зарядом вытянутые пальцы направляют в сторону, противоположную движению частицы.

Полезные сведения и советы

  1. Общепринято считать, что направление тока указывает в сторону от плюса к минусу. На самом деле, в проводнике упорядоченное перемещение электронов направлено от негативного полюса к позитивному. Поэтому, если бы перед вами стояла задача вычисления силы Лоренца для отдельного электрона в проводнике, следовало бы учитывать данное обстоятельство.
  2. По умолчанию мы рассматриваем винт (буравчик, штопор) с правой резьбой. Однако не следует забывать о существовании винтов с левой резьбой.
  3. При использовании правила часовой стрелки мы принимаем условие о том, что стрелки совершают движение слева направо. Известно, что в бывшем СССР производились часы с обратным ходом часового механизма. Возможно, такие модели существуют до сегодняшнего дня.

Советы: если вам необходимо определить пространственное расположение момента силы, под действием которой происходит вращение некоего тела – вращайте винт в ту же сторону. Условное врезание винта укажет на ориентацию вектора момента силы. Скорость вращения тела не влияет на направление вектора.

Полезно знать, что при вращении буравчика по ходу вращения тела, траектория его ввинчивания совпадёт с направлением угловой скорости.

Правило буравчика для определения направления магнитного поля

Азбука физики

Научные игрушки

Простые опыты

Этюды об ученых

Решение задач

Презентации

Книги по физике
Умные книжки

Есть вопросик?

Его величество.

Музеи науки.

Достижения.

Викторина по физике

Физика в кадре

Учителю

Читатели пишут

ОПРЕДЕЛЕНИЕ НАПРАВЛЕНИЯ ЛИНИЙ МАГНИТНОГО ПОЛЯ

ПРАВИЛО БУРАВЧИКА
для прямого проводника с током

– служит для определения направления магнитных линий ( линий магнитной индукции)
вокруг прямого проводника с током.

Если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитного поля тока.

Допустим, проводник с током расположен перпендикулярно плоскости листа:
1. направление эл. тока от нас ( в плоскость листа)


Согласно правилу буравчика, линии магнитного поля будут направлены по часовой стрелке.

или
2. направление эл. тока на нас ( из плоскости листа),


Тогда, согласно правилу буравчика, линии магнитного поля будут направлены против часовой стрелки.

ПРАВИЛО ПРАВОЙ РУКИ
для соленоида ( т.е. катушки с током)

– служит для определения направления магнитных линий (линий магнитной индукции) внутри соленоида.

Если обхватить соленоид ладонью правой руки так, чтобы четыре пальца были направлены вдоль тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида.

1. Как взаимодействуют между собой 2 катушки с током?

2. Как направлены токи в проводах, если силы взаимодействия направлены так, как на рисунке?


3. Два проводника расположены параллельно друг другу. Укажите раправление тока в проводнике СД.

Жду решений на следующем уроке на “5” !

Известно, что сверхпроводники ( вещества, обладающие при определенных температурах практически нулевым электрическим сопротивлением ) могут создавать очень сильные магнитные поля. Были проделаны опыты по демонстрации подобных магнитных полей. После охлаждения керамического сверхпроводника жидким азотом на его поверхность помещали небольшой магнит. Отталкивающая сила магнитного поля сверхпроводника была столь высокой, что магнит поднимался, зависал в воздухе и парил над сверхпроводником до тех пор, пока сверхпроводник, нагреваясь, не терял свои необыкновенные свойства.

Направление тока и линий его магнитного поля. Правило буравчика

Урок 34. Физика 9 класс

Конспект урока “Направление тока и линий его магнитного поля. Правило буравчика”

принадлежат к числу самых

блестящих работ, которые

проведены когда-либо в науке.

Джеймса Клерка Максвелла

Магнитное поле — это силовое поле, действующее на движущиеся электрические заряды.

Для наглядного представления магнитного поля пользуются магнитными линиями Магнитные линии — это воображаемые линии, вдоль которых расположились бы маленькие магнитные стрелки, помещенные в магнитное поле.

Замкнутость линий магнитного поля представляет собой фундаментальное свойство магнитного поля. Оно свидетельствует о том, что магнитных зарядов, подобных электрическим, в природе нет.

За направление магнитной линии в какой-либо ее точке условно принимают направление, которое указывает северный полюс магнитной стрелки, помещенной в эту точку.

Теперь разберём, от чего зависит направление линий магнитного поля тока более подробно.

Известно, что для получения спектра магнитного поля прямого проводника с током, его можно пропустить через лист картона, а на картон насыпать железные опилки. Под действием магнитного поля железные опилки располагаются по концентрическим окружностям. Поместим вдоль линий магнитного поля магнитные стрелки.

На рисунке показано расположение магнитных стрелок вокруг проводника с током, перпендикулярного плоскости чертежа. Если изменить направление тока в проводнике, то можно увидеть, что изменение направления тока приводит к повороту всех магнитных стрелок на 180 0 . Причем оси стрелок располагаются по касательной к магнитным линиям.

Т.о. можно сделать вывод, что направление линий магнитного поля будет зависеть от направления тока в проводнике.

Эта связь может быть выражена простым правилом, которое называют правилом буравчика (или правилом правого винта).

Правило буравчика заключается в следующем: если поворачивать головку винта так, чтобы поступательное движение острия винта происходило вдоль тока в проводнике, то направление вращения головки указывает направление линий магнитного поля тока.

С помощью правила буравчика по направлению тока можно определить направление линий магнитного поля, создаваемого этим током, а по направлению линий магнитного поля — направление тока, создающего это поле.

Для определения направления линий магнитного поля соленоида удобнее пользоваться другим правилом, которое иногда называют правилом правой руки.

Соленоид — это катушка цилиндрической формы из проволоки, витки которой намотаны вплотную друг к другу в одном направлении, а длина катушки значительно больше радиуса витка. Магнитное поле соленоида можно представить как результат сложения полей, создаваемых несколькими круговыми токами, имеющими общую ось.

На рисунке видно, что внутри соленоида линии магнитного поля каждого отдельного витка имеют одинаковое направление, тогда как между соседними витками они имеют противоположное направление. Поэтому, при достаточно плотной намотке соленоида, противоположно направленные участки линий магнитного поля соседних витков взаимно уничтожаться, а одинаково направленные участки сольются в общую линию.

Изучение этого поля с помощью железных опилок показало, что внутри соленоида магнитные линии поля представляют собой прямые, параллельные оси соленоида, которые расходятся на его концах и замыкаются вне соленоида.

Зная направление тока в витке, полюсы соленоида можно определить с помощью правила правой руки: если обхватить соленоид, ладонью правой руки, направив четыре пальца по направлению тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида.

Правило правой руки можно применять и для определения направления линий магнитного поля в центре одиночного витка с током.

Из курса физики 8 класса известно, что на всякий проводник с током, помещенный в магнитное поле и не совпадающий с его магнитными линиями, это поле действует с некоторой силой.

Наличие такой силы можно показать с помощью установки. Проволочная трехсторонняя рамка ABCD подвешена на крюках так, что может свободно отклоняться от вертикали.

Сторона ВС находится в области наиболее сильного поля дугообразного магнита, располагаясь между его полюсами. Рамка присоединена к источнику тока последовательно с реостатом и ключом. При замыкании ключа в цепи возникает электрический ток, и сторона ВС втягивается в пространство между полюсами.

Если убрать магнит, то при замыкании цепи проводник ВС двигаться не будет. Значит, со стороны магнитного поля на проводник с током действует некоторая сила, отклоняющая его от первоначального положения.

Таким образом, магнитное поле создается электрическим током и обнаруживается по его действию на электрический ток.

Если изменить направление тока в цепи, поменяв местами провода в гнездах изолирующего штатива, то, при этом, изменится и направление движения проводника, а значит, и направление действующей на него силы.

Направление силы изменится и в том случае, если, не меняя направления тока, поменять местами полюсы магнита (т. е. изменить направление линий магнитного поля).

Следовательно, направление тока в проводнике, направление линий магнитного поля и направление силы, действующей на проводник, связаны между собой.

Направление силы, действующей на проводник с током в магнитном поле, можно определить, пользуясь правилом левой руки, которое заключается в следующем: если левую руку расположить так, чтобы линии магнитного поля входили в ладонь перпендикулярно к ней, а четыре вытянутых пальца были направлены по току, то отставленный на 90° большой палец покажет направление действующей на проводник силы.

Пользуясь правилом левой руки, следует помнить, что за направление тока во внешней части электрической цепи (т. е. вне источника тока) принимается направление от положительного полюса источника тока к отрицательному. Другими словами, четыре пальца левой руки должны быть направлены против движения электронов в электрической цепи.

С помощью правила левой руки можно определить направление силы, с которой магнитное поле действует на отдельно взятую движущуюся в нем частицу, как положительно, так и отрицательно заряженную. Для наиболее простого случая, когда частица движется в плоскости, перпендикулярной магнитным линиям, это правило формулируется следующим образом: если левую руку расположить так, чтобы линии магнитного поля входили в ладонь перпендикулярно к ней, а четыре пальца были направлены по движению положительно заряженной частицы (или против движения отрицательно заряженной), то отставленный на 90° большой палец покажет направление действующей на частицу силы.

Следует отметить, что сила действия магнитного поля на проводник с током или движущуюся заряженную частицу равна нулю, если направление тока в проводнике или скорость частицы совпадают с линией магнитной индукции или параллельны ей.

– Направление линий магнитного поля будет зависеть от направления тока в проводнике.

– Эта связь может быть выражена с помощью правила буравчика (или правила правого винта): если поворачивать головку винта так, чтобы поступательное движение острия винта происходило вдоль тока в проводнике, то направление вращения головки указывает направление линий магнитного поля тока.

– Для определения направления линий магнитного поля соленоида удобнее пользоваться правилом правой руки: если обхватить соленоид ладонью правой руки, направив четыре пальца по направлению тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида.

– Магнитное поле действует с некоторой силой на любой проводник с током, находящийся в этом поле. Направление этой силы можно определить с помощью правила левой руки: если левую руку расположить так, чтобы линии магнитного поля входили в ладонь перпендикулярно к ней, а четыре вытянутых пальца были направлены по току, то отставленный на 90° большой палец покажет направление действующей на проводник силы.

Простое объяснение правила буравчика

Объяснение названия

Большинство людей помнят упоминание об этом из курса физики, а именно раздела электродинамики. Так вышло неспроста, ведь эта мнемоника зачастую и приводится ученикам для упрощения понимания материала. В действительности правило буравчика применяют как в электричестве, для определения направления магнитного поля, так и в других разделах, например, для определения угловой скорости.

Под буравчиком подразумевается инструмент для сверления отверстий малого диаметра в мягких материалах, для современного человека привычнее будет привести для примера штопор.

Важно! Предполагается, что буравчик, винт или штопор имеет правую резьбу, то есть направление его вращения, при закручивании, по часовой стрелке, т.е. вправо.

На видео ниже предоставлена полная формулировка правила буравчика, посмотрите обязательно, чтобы понять всю суть:

Как связано магнитное поле с буравчиком и руками

В задачах по физике, при изучении электрических величин, часто сталкиваются с необходимостью нахождения направления тока, по вектору магнитной индукции и наоборот. Также эти навыки потребуются и при решении сложных задач и расчетов, связанных магнитным полем систем.

Прежде чем приступить к рассмотрению правил, хочу напомнить, что ток протекает от точки с большим потенциалом к точке с меньшим. Можно сказать проще — ток протекает от плюса к минусу.

Правило буравчика имеет следующий смысл: при вкручивании острия буравчика вдоль направления тока – рукоятка будет вращаться по направлению вектора B (вектор линий магнитной индукции).

Правило правой руки работает так:

Поставьте большой палец так, словно вы показываете «класс!», затем поверните руку так, чтобы направление тока и пальца совпадали. Тогда оставшиеся четыре пальца совпадут с вектором магнитного поля.

Наглядный разбор правила правой руки:

Чтобы увидеть это более наглядно проведите эксперимент – рассыпьте металлическую стружку на бумаге, сделайте в листе отверстие и проденьте провод, после подачи на него тока вы увидите, что стружка сгруппируется в концентрические окружности.

Магнитное поле в соленоиде

Всё вышеописанное справедливо для прямолинейного проводника, но что делать, если проводник смотан в катушку?

Мы уже знаем, что при протекании тока вокруг проводника создается магнитное поле, катушка – это провод, свёрнутый в кольца вокруг сердечника или оправки много раз. Магнитное поле в таком случае усиливается. Соленоид и катушка – это, в принципе, одно и то же. Главная особенность в том, что линии магнитного поля проходят так же как и в ситуации с постоянным магнитом. Соленоид является управляемым аналогом последнего.

Правило правой руки для соленоида (катушки) нам поможет определить направление магнитного поля. Если взять катушку в руку так, чтобы четыре пальца смотрели в сторону протекания тока, тогда большой палец укажет на вектор B в середине катушки.

Если закручивать вдоль витков буравчик, опять же по направлению тока, т.е. от клеммы «+», до клеммы «-» соленоида, тогда острый конец и направление движения как лежит вектор магнитной индукции.

Простыми словами – куда вы крутите буравчик, туда и выходят линии магнитного поля. То же самое справедливо для одного витка (кругового проводника)

Определение направления тока буравчиком

Если вам известно направление вектора B – магнитной индукции, вы можете легко применить это правило. Мысленно передвигайте буравчик вдоль направления поля в катушке острой частью вперед, соответственно вращение по часовой стрелки вдоль оси движения и покажет, куда течет ток.

Если проводник прямой – вращайте вдоль указанного вектора рукоятку штопора, так чтобы это движение было по часовой стрелке. Зная, что он имеет правую резьбу – направление, в котором он вкручивается, совпадает с током.

Что связано с левой рукой

Не путайте буравчика и правило левой руки, оно нужно для определения действующей на проводник силы. Выпрямленная ладонь левой руки располагается вдоль проводника. Пальцы показывают в сторону протекания тока I. Через раскрытую ладонь проходят линии поля. Большой палец совпадает с вектором силы – в этом и заключается смысл правила левой руки. Эта сила называется силой Ампера.

Можно это правило применить к отдельной заряженной частице и определить направление 2-х сил:

Представьте, что положительно заряженная частица двигается в магнитном поле. Линии вектора магнитной индукции перпендикулярны направлению её движения. Нужно поставить раскрытую левую ладонь пальцами в сторону движения заряда, вектор B должен пронизывать ладонь, тогда большой палец укажет направление вектора Fа. Если частица отрицательная – пальцы смотрят против хода заряда.

Если какой-то момент вам был непонятен, на видео наглядно рассматривается, как пользоваться правилом левой руки:

Важно знать! Если у вас есть тело и на него действует сила, которая стремится его повернуть, вращайте винт в эту сторону, и вы определите, куда направлен момент силы. Если вести речь об угловой скорости, то здесь дело обстоит так: при вращении штопора в одном направлении с вращением тела, завинчиваться он будет в направлении угловой скорости.

Выводы

Освоить эти способы определения направления сил и полей очень просто. Такие мнемонические правила в электричестве значительно облегчают задачи школьникам и студентам. С буравчиком разберется даже полный чайник, если он хотя бы раз открывал вино штопором. Главное не забыть, куда течет ток. Повторюсь, что использование буравчика и правой руки чаще всего с успехом применяются в электротехнике.

Напоследок рекомендуем просмотреть видео, благодаря которому вы на примере сможете понять, что такое правило буравчика и как его применять на практике:

Наверняка вы не знаете:

Магнитное поле

Магнитное поле – особая форма материи, существующая вокруг движущихся электрических зарядов – токов.

Источниками магнитного поля являются постоянные магниты, проводники с током. Обнаружить магнитное поле можно по действию на магнитную стрелку, проводник с током и движущиеся заряженные частицы.

Для исследования магнитного поля используют замкнутый плоский контур с током (рамку с током).

Впервые поворот магнитной стрелки около проводника, по которому протекает ток, обнаружил в 1820 году Эрстед. Ампер наблюдал взаимодействие проводников, по которым протекал ток: если токи в проводниках текут в одном направлении, то проводники притягиваются, если токи в проводниках текут в противоположных направлениях, то они отталкиваются.

Свойства магнитного поля:

  • магнитное поле материально;
  • источник и индикатор поля – электрический ток;
  • магнитное поле является вихревым – его силовые линии (линии магнитной индукции) замкнутые;
  • величина поля убывает с расстоянием от источника поля.

Важно!
Магнитное поле не является потенциальным. Его работа на замкнутой траектории может быть не равна нулю.

Магнитным взаимодействием называют притяжение или отталкивание электрически нейтральных проводников при пропускании через них электрического тока.

Магнитное взаимодействие движущихся электрических зарядов объясняется так: всякий движущийся электрический заряд создает в пространстве магнитное поле, которое действует на движущиеся заряженные частицы.

Силовая характеристика магнитного поля – вектор магнитной индукции ​ ( vec ) ​. Модуль вектора магнитной индукции равен отношению максимального значения силы, действующей со стороны магнитного поля на проводник с током, к силе тока в проводнике ​ ( I ) ​ и его длине ​ ( l ) ​:

Обозначение – ( vec ) , единица измерения в СИ – тесла (Тл).

1 Тл – это индукция такого магнитного поля, в котором на каждый метр длины проводника при силе тока 1 А действует максимальная сила 1 Н.

Направление вектора магнитной индукции совпадает с направлением от южного полюса к северному полюсу магнитной стрелки (направление, которое указывает северный полюс магнитной стрелки), свободно установившейся в магнитном поле.

Направление вектора магнитной индукции можно определить по правилу буравчика:

если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением вектора магнитной индукции.

Для определения магнитной индукции нескольких полей используется принцип суперпозиции:

магнитная индукция результирующего поля, созданного несколькими источниками, равна векторной сумме магнитных индукций полей, создаваемых каждым источником в отдельности:

Поле, в каждой точке которого вектор магнитной индукции одинаков по величине и направлению, называется однородным.

Наглядно магнитное поле изображают в виде магнитных линий или линий магнитной индукции. Линия магнитной индукции – это воображаемая линия, в любой точке которой вектор магнитной индукции направлен по касательной к ней.

Свойства магнитных линий:

  • магнитные линии непрерывны;
  • магнитные линии замкнуты (т.е. в природе не существует магнитных зарядов, аналогичных электрическим зарядам);
  • магнитные линии имеют направление, связанное с направлением тока.

Густота расположения позволяет судить о величине поля: чем гуще расположены линии, тем сильнее поле.

На плоский замкнутый контур с током, помещенный в однородное магнитное поле, действует момент сил ​ ( M ) ​:

где ​ ( I ) ​ – сила тока в проводнике, ​ ( S ) ​ – площадь поверхности, охватываемая контуром, ​ ( B ) ​ – модуль вектора магнитной индукции, ​ ( alpha ) ​ – угол между перпендикуляром к плоскости контура и вектором магнитной индукции.

Тогда для модуля вектора магнитной индукции можно записать формулу:

где максимальный момент сил соответствует углу ​ ( alpha ) ​ = 90°.

В этом случае линии магнитной индукции лежат в плоскости рамки, и ее положение равновесия является неустойчивым. Устойчивым будет положение рамки с током в случае, когда плоскость рамки перпендикулярна линиям магнитной индукции.

Взаимодействие магнитов

Постоянные магниты – это тела, длительное время сохраняющие намагниченность, то есть создающие магнитное поле.

Основное свойство магнитов: притягивать тела из железа или его сплавов (например стали). Магниты бывают естественные (из магнитного железняка) и искусственные, представляющие собой намагниченные железные полосы. Области магнита, где его магнитные свойства выражены наиболее сильно, называют полюсами. У магнита два полюса: северный ​ ( N ) ​ и южный ​ ( S ) ​.

Важно!
Вне магнита магнитные линии выходят из северного полюса и входят в южный полюс.

Разделить полюса магнита нельзя.

Объяснил существование магнитного поля у постоянных магнитов Ампер. Согласно его гипотезе внутри молекул, из которых состоит магнит, циркулируют элементарные электрические токи. Если эти токи ориентированы определенным образом, то их действия складываются и тело проявляет магнитные свойства. Если эти токи расположены беспорядочно, то их действие взаимно компенсируется и тело не проявляет магнитных свойств.

Магниты взаимодействуют: одноименные магнитные полюса отталкиваются, разноименные – притягиваются.

Магнитное поле проводника с током

Электрический ток, протекающий по проводнику с током, создает в окружающем его пространстве магнитное поле. Чем больше ток, проходящий по проводнику, тем сильнее возникающее вокруг него магнитное поле.

Магнитные силовые линии этого поля располагаются по концентрическим окружностям, в центре которых находится проводник с током.

Направление линий магнитного поля вокруг проводника с током всегда находится в строгом соответствии с направлением тока, проходящего по проводнику.

Направление магнитных силовых линий можно определить по правилу буравчика: если поступательное движение буравчика (1) совпадает с направлением тока (2) в проводнике, то вращение его рукоятки укажет направление силовых линий (4) магнитного поля вокруг проводника.

При изменении направления тока линии магнитного поля также изменяют свое направление.

По мере удаления от проводника магнитные силовые линии располагаются реже. Следовательно, индукция магнитного поля уменьшается.

Направление тока в проводнике принято изображать точкой, если ток идет к нам, и крестиком, если ток направлен от нас.

Для получения сильных магнитных полей при небольших токах обычно увеличивают число проводников с током и выполняют их в виде ряда витков; такое устройство называют катушкой.

В проводнике, согнутом в виде витка, магнитные поля, образованные всеми участками этого проводника, будут внутри витка иметь одинаковое направление. Поэтому интенсивность магнитного поля внутри витка будет больше, чем вокруг прямолинейного проводника. При объединении витков в катушку магнитные поля, созданные отдельными витками, складываются. При этом концентрация силовых линий внутри катушки возрастает, т. е. магнитное поле внутри нее усиливается.

Чем больше ток, проходящий через катушку, и чем больше в ней витков, тем сильнее создаваемое катушкой магнитное поле. Магнитное поле снаружи катушки также складывается из магнитных полей отдельных витков, однако магнитные силовые линии располагаются не так густо, вследствие чего интенсивность магнитного поля там не столь велика, как внутри катушки.

Магнитное поле катушки с током имеет такую же форму, как и поле прямолинейного постоянного магнита: силовые магнитные линии выходят из одного конца катушки и входят в другой ее конец. Поэтому катушка с током представляет собой искусственный электрический магнит. Обычно для усиления магнитного поля внутрь катушки вставляют стальной сердечник; такую катушку называют электромагнитом.

Направление линий магнитной индукции катушки с током находят по правилу правой руки:

если мысленно обхватить катушку с током ладонью правой руки так, чтобы четыре пальца указывали направление тока в ее витках, тогда большой палец укажет направление вектора магнитной индукции.

Для определения направления линий магнитного поля, создаваемого витком или катушкой, можно использовать также правило буравчика:

если вращать ручку буравчика по направлению тока в витке или катушке, то поступательное движение буравчика укажет направление вектора магнитной индукции.

Электромагниты нашли чрезвычайно широкое применение в технике. Полярность электромагнита (направление магнитного поля) можно определить и с помощью правила правой руки.

Сила Ампера

Сила Ампера – сила, которая действует на проводник с током, находящийся в магнитном поле.

Закон Ампера: на проводник c током силой ​ ( I ) ​ длиной ​ ( l ) ​, помещенный в магнитное поле с индукцией ​ ( vec ) ​, действует сила, модуль которой равен:

где ​ ( alpha ) ​ – угол между проводником с током и вектором магнитной индукции ​ ( vec ) ​.

Направление силы Ампера определяют по правилу левой руки: если ладонь левой руки расположить так, чтобы перпендикулярная к проводнику составляющая вектора магнитной индукции ​ ( B_perp ) ​ входила в ладонь, а четыре вытянутых пальца указывали направление тока в проводнике, то отогнутый на 90° большой палец покажет направление силы Ампера.

Сила Ампера не является центральной. Она направлена перпендикулярно линиям магнитной индукции.

Сила Ампера широко используется. В технических устройствах создают магнитное поле с помощью проводников, по которым течет электрический ток. Электромагниты используют в электромеханическом реле для дистанционного выключения электрических цепей, магнитном подъемном кране, жестком диске компьютера, записывающей головке видеомагнитофона, в кинескопе телевизора, мониторе компьютера. В быту, на транспорте и в промышленности широко применяют электрические двигатели. Взаимодействие электромагнита с полем постоянного магнита позволило создать электроизмерительные приборы (амперметр, вольтметр).

Простейшей моделью электродвигателя служит рамка с током, помещенная в магнитное поле постоянного магнита. В реальных электродвигателях вместо постоянных магнитов используют электромагниты, вместо рамки – обмотки с большим числом витков провода.

Коэффициент полезного действия электродвигателя:

где ​ ( N ) ​ – механическая мощность, развиваемая двигателем.

Коэффициент полезного действия электродвигателя очень высок.

Алгоритм решения задач о действии магнитного поля на проводники с током:

  • сделать схематический чертеж, на котором указать проводник или контур с током и направление силовых линий поля;
  • отметить углы между направлением поля и отдельными элементами контура;
  • используя правило левой руки, определить направление силы Ампера, действующей на проводник с током или на каждый элемент контура, и показать эти силы на чертеже;
  • указать все остальные силы, действующие на проводник или контур;
  • записать формулы для остальных сил, упоминаемых в задаче. Выразить силы через величины, от которых они зависят. Если проводник находится в равновесии, то необходимо записать условие его равновесия (равенство нулю суммы сил и моментов сил);
  • записать второй закон Ньютона в векторном виде и в проекциях;
  • решить полученную систему уравнений относительно неизвестной величины;
  • решение проверить.

Сила Лоренца

Сила Лоренца – сила, действующая на движущуюся заряженную частицу со стороны магнитного поля.

Формула для нахождения силы Лоренца:

где ​ ( q ) ​ – заряд частицы, ​ ( v ) ​ – скорость частицы, ​ ( B ) ​ – модуль вектора магнитной индукции, ​ ( alpha ) ​ – угол между вектором скорости частицы и вектором магнитной индукции.

Направление силы Лоренца определяют по правилу левой руки: если ладонь левой руки расположить так, чтобы перпендикулярная к проводнику составляющая вектора магнитной индукции ​ ( B_perp ) ​ входила в ладонь, а четыре вытянутых пальца указывали направление скорости положительно заряженной частицы, то отогнутый на 90° большой палец покажет направление силы Лоренца.

Если заряд частицы отрицательный, то направление силы изменяется на противоположное.

Важно!
Если вектор скорости сонаправлен с вектором магнитной индукции, то частица движется равномерно и прямолинейно.

В однородном магнитном поле сила Лоренца искривляет траекторию движения частицы.

Если вектор скорости перпендикулярен вектору магнитной индукции, то частица движется по окружности, радиус которой равен:

где ​ ( m ) ​ – масса частицы, ​ ( v ) ​ – скорость частицы, ​ ( B ) ​ – модуль вектора магнитной индукции, ​ ( q ) ​ – заряд частицы.

В этом случае сила Лоренца играет роль центростремительной и ее работа равна нулю. Период (частота) обращения частицы не зависит от радиуса окружности и скорости частицы. Формула для вычисления периода обращения частицы:

Угловая скорость движения заряженной частицы:

Важно!
Сила Лоренца не меняет кинетическую энергию частицы и модуль ее скорости. Под действием силы Лоренца изменяется направление скорости частицы.

Если вектор скорости направлен под углом ​ ( alpha ) ​ (0° ( alpha ) ( vec_2 ) ​, параллелен вектору ( vec ) , а другой, ( vec_1 ) , – перпендикулярен ему. Вектор ( vec_1 ) не меняется ни по модулю, ни по направлению. Вектор ( vec_2 ) меняется по направлению. Сила Лоренца будет сообщать движущейся частице ускорение, перпендикулярное вектору скорости ( vec_1 ) . Частица будет двигаться по окружности. Период обращения частицы по окружности – ​ ( T ) ​.

Таким образом, на равномерное движение вдоль линии индукции будет накладываться движение по окружности в плоскости, перпендикулярной вектору ( vec ) . Частица движется по винтовой линии с шагом ​ ( h=v_2T ) ​.

Важно!
Если частица движется в электрическом и магнитном полях, то полная сила Лоренца равна:

Особенности движения заряженной частицы в магнитном поле используются в масс-спектрометрах – устройствах для измерения масс заряженных частиц; ускорителях частиц; для термоизоляции плазмы в установках «Токамак».

Алгоритм решения задач о действии магнитного (и электрического) поля на заряженные частицы:

  • сделать чертеж, указать на нем силовые линии магнитного (и электрического) поля, нарисовать вектор начальной скорости частицы и отметить знак ее заряда;
  • изобразить силы, действующие на заряженную частицу;
  • определить вид траектории частицы;
  • разложить силы, действующие на заряженную частицу, вдоль направления магнитного поля и по направлению, ему перпендикулярному;
  • составить основное уравнение динамики материальной точки по каждому из направлений разложения сил;
  • выразить силы через величины, от которых они зависят;
  • решить полученную систему уравнений относительно неизвестной величины;
  • решение проверить.

Читайте также:  Электрический фидер: что это, устройство, назначение
Добавить комментарий